Abstract

The treatment of chronic bone and joint infections is characterized by obstinate persistency of the causing microorganisms and resulting long term disability to patients, associated with remarkable costs for the health care system. Difficulties derive from biofilm formed on dead bone and eventual implants, with resistance against immunological defences and antimicrobial substances. Biofilm embedded bacteria require up to 1000 times the antibiotic concentration of planktonic bacteria for elimination. Systemic antibiotic treatment alone cannot provide the concentrations required and surgical intervention is always prerequisite for potentially providing a cure. A second issue is that osseous defects are almost always present after surgical debridement, and it is difficult to address their reconstruction. One option is to use bone grafts, either from the patient´s own body or from foreign donors (allografts). Grafts are usually unvascularized and are prone to colonization with bacteria. Loading of allografts with antibiotics may not only protect grafts from bacterial adhesion but, using appropriate processing methods, may also provide high local antibiotic concentrations that may eliminate remaining sessile pathogens. For efficient action as antibiotic carriers, the release of antibiotics should be above the minimum biofilm eradication concentration (MBEC) for a prolonged period of time. Cleaning the bone from bone marrow opens a large reservoir for storage of antimicrobial substances that, after implantation, may be released to the surrounding in a sustained mode, possibly eliminating remaining biofilm remnants. Removal of bone marrow, leaving a pure matrix, provides increased safety and improved revascularization of the graft. Local provision of antibiotic concentrations above the MBEC may enable simultaneous internal fixation with osteosynthetic material and single stage exchange of infected endoprostheses, resulting in shorter hospital stays with reduced pain and faster rehabilitation of patients.

Highlights

  • Bacterial contamination of bone and orthopaedic implants may occur via the blood stream, through open wounds or surgical procedures, especially when foreign material is implanted as in joint replacement or osteosynthesis

  • The purpose of this review paper is to detail the use of allograft bone as an antibiotic carrier when treating orthopaedic infections

  • Antibiotic concentrations reached by systemic antibiosis or local therapy with established antibiotic carriers may eradicate planktonic residues, but may not be effective for eliminating micro-clusters disrupted from biofilms that may result in infection recurrence

Read more

Summary

Introduction

Bacterial contamination of bone and orthopaedic implants may occur via the blood stream, through open wounds (fractures, ulcers) or surgical procedures, especially when foreign material is implanted as in joint replacement or osteosynthesis. That it has been realized that these orthopaedic infections are caused by well-organized biofilm-forming bacterial pathogens, new technologies that deliver high concentrations of antibiotics locally and "on demand" are required 1. The purpose of this review paper is to detail the use of allograft bone as an antibiotic carrier when treating orthopaedic infections.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.