Abstract
Sponges have evolved a variety of chemical and structural defense mechanisms to avoid predation. While chemical defense is well established in sponges, studies on structural defense are rare and with ambiguous results. We used field and laboratory experiments to investigate predation patterns and the anti-predatory defense mechanisms of the sponge Melophlus sarasinorum, a common inhabitant of Indo-pacific coral reefs. Specifically, we aimed to investigate whether M. sarasinorum is chemically or structurally defended against predation and if the defenses are expressed differently in the ectosomal and choanosomal tissue of the sponge. Chemical defense was measured as feeding deterrence, structural defense as feeding deterrence and toughness. Our results demonstrated that chemical defense is evenly distributed throughout the sponge and works in conjunction with a structurally defended ectosome to further reduce predation levels. The choanosome of the sponge contained higher protein levels, but revealed no structural defense. We conclude that the equal distribution of chemical defenses throughout M. sarasinorum is in accordance with Optimal Defense Theory (ODT) in regards to fish predation, while structural defense supports ODT by being restricted to the surface layer which experiences the highest predation risks from mesograzers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental Marine Biology and Ecology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.