Abstract

Ultra-short ( 1.55 μm) are very attractive for many applications such as three-photon microscopy1, frequency metrology2, or high harmonic generation3. Solitonic self-compression is an attractive effect for this purpose as compression to sub-50 fs pulses can be achieved without the need for external compressing optics, directly out of an optical fiber. Self-compression at high energy was demonstrated around 2 μm in all-solid4 or gas-filled5 hollow-core-PCFs. However, the latter demonstrations were restricted to Tm emission band in order to reach the soliton self-compression effect in low-nonlinearity media. In this communication, we present a compact monolithic all-fiber source of ultrashort (35 fs) pulses emitting outside conventional lasing bands, from 1.65 to 2 μm based on Raman-induced soliton self-frequency shift (SSFS) and soliton self-compression (SSC).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.