Abstract

Sensing of atmospheric trace gases is crucial for climate monitoring and to predict global climate changes. The required global coverage and spatial resolution have driven the studies of space-borne differential absorption lidar (DIAL) instruments to remotely monitor atmospheric gases from a satellite to ground. The performance of such instruments is notably determined by the frequency stability and accuracy of a low-power continuous-wave laser that seeds the pulsed laser transmitter. For a CO2 DIAL, this reference laser needs to be stabilized with an adjustable frequency-detuning from the center of the probed molecular transition and the 2.05-μm spectral range is of high interest from a spectroscopic point-of-view [1].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call