Abstract

High concentration of blood ammonia can affect the uterus receptivity and decrease fecundity in dairy cow. Melatonin can reduce reactive oxygen species (ROS) level and has antioxidant and anti-inflammatory effects. However, it is not clear whether melatonin can alleviate ammonia-induced apoptosis of endometrial epithelial cell (EEC) and reduced uterus receptivity. The bovine EEC were treated with ammonium chloride and/or melatonin. Cell viability, apoptosis, oxidative stress and mitochondrial membrane potential were measured and the expression of apoptosis-related genes (p53, Cyt-c, Bax, Bcl-2, caspase-8, caspase-9 and caspase-3), uterus receptivity related genes (VEGF, LIF and EGF) and inflammatory factors (TLR-4, IL-6 and NF-κB) were detected. In addition, the expression of VEGF was detected after adding NF-κB inhibitor (40 μM) and IL-6 (1 ng/mL and 50 ng/mL). The results showed that ammonia significantly increased intracellular ROS level, mRNA and protein expression of Bax, p53, Cyt-c, caspase-9, caspase-8, caspase-3, TLR-4, NF-κB and IL-6, promoted cell apoptosis, while decreased mitochondrial membrane potential, the mRNA and protein expression of VEGF and EGF. Interestingly, melatonin significantly mitigated ammonia-induced changes. However, melatonin could not alleviate ammonia-induced changes of IL-6 and VEGF when NF-κB signal pathway was inhibited. The addition of IL-6 significantly reduced mRNA and protein expression of VEGF. In conclusion, ammonia induced EEC apoptosis through ROS production and activation of mitochondrial apoptosis pathway, and induced inflammatory response through TLR4/NF-κB/IL-6 pathway. Melatonin alleviated EEC apoptosis by inhibiting ROS pathway, and reduced IL-6 expression by inhibiting TLR-4/NF-κB signal pathway, which eventually improved VEGF expression and uterus receptivity in dairy cows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call