Abstract

BackgroundThe current study was carried out to evaluate the effects of mycotoxin biodegradation agent (MBA, composed of Bacillus subtilis ANSB01G and Devosia sp. ANSB714) on relieving zearalenone (ZEA) and deoxynivalenol (DON) toxicosis in immature gilts.MethodsA total of forty pre-pubertal female gilts (61.42 ± 1.18 kg) were randomly allocated to four diet treatments: CO (positive control); MO (negative control, ZEA 596.86 μg/kg feed and DON 796 μg/kg feed); COA (CO + 2 g MBA/kg feed); MOA (MO + 2 g MBA/kg feed). Each treatment contained 10 replicates with 1 gilt per replicate. Gilts were housed in an environmentally controlled room with the partially slatted floor.ResultsDuring the entire experimental period of 28 d, average daily gain (ADG) and average daily feed intake (ADFI) of gilts in MO group was significantly reduced compared with those in CO group. The vulva size of gilts was significantly higher in MO group than CO group. In addition, significant increases in the plasma levels of IgA, IgG, IL-8, IL-10 and PRL were determined in MO group compared with that in CO group. ZEA and DON in the diet up-regulated apoptotic caspase-3 in ovaries and uteri, along with down-regulated the anti-apoptotic protein Bcl-2 in ovaries. The supplementation of MBA into diets co-contaminated with ZEA and DON significantly increased ADG, decreased the vulva sizes, reduced the levels of IgG, IL-8 and PRL in plasma, and regulated apoptosis in ovaries and uteri of gilts.ConclusionsThe present results indicated that feeding diet contaminated with ZEA and DON simultaneously (596.86 μg/kg + 796 μg/kg) had detrimental effects on growth performance, plasma immune function and reproductive status of gilts. And MBA could reduce the negative impacts of these two toxins, believed as a promising feed additive for mitigating toxicosis of ZEA and DON at low levels in gilts.

Highlights

  • The current study was carried out to evaluate the effects of mycotoxin biodegradation agent

  • The average daily gain (ADG) and average daily feed intake (ADFI) of gilts in MO group were lower than those in CO group (P < 0.05); the addition of Mycotoxin biodegradation agent (MBA) into moldy diets significantly improved the ADG (15.29%) (P < 0.05) and ADFI (6.22%) of gilts when compared with MO group, maintaining a similar status showed in CO group

  • The ADFI of gilts fed diet COA was decreased in comparison to the gilts fed diet CO (P < 0.05), but the ADG had no difference from those fed diet CO (P > 0.05)

Read more

Summary

Methods

Experimental animals, diets and management A total of forty immature gilts (Landrace × Yorkshire) with an average body weight of 61.42 ± 1.18 kg were randomly assigned to 4 dietary treatments with 10 gilts per treatment. HPLC analysis The concentration of ZEA, DON, AF and OTA in the diets were measured using HPLC method according to Chinese certification GB/T 23504–2009, GB/T 23503–2009, GB/T 18979–2003 and GB/T 23502– 2009, respectively, with some small improvements [24]. The dried eluate was diluted in 200 μL of the mobile phase solution and 20 μL was injected into the HPLC system (Shimadzu LC-10 AT) for the separation and determination of the concentrations of ZEA and its metabolites. The samples were extracted with a mixture of acetonitrile and water, followed by centrifugation at 5,000 r/ min for 30 min after incubation at 37 °C for 12 h. Statistical analysis The data were analyzed as a 2 × 2 factorial design using the MIXED procedure of SAS 9.1 (SAS Inst., Inc., Cary, NC, USA); toxins level, MBA level, and their interaction were fixed factors, and experimental period and animal were random factors. A value of P < 0.05 was considered as statistically significant

Results
Conclusions
Background
Results and discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call