Abstract

Trailing-edge-flap flow control for the mitigation of large negative pitching moments and negative aerodynamic damping caused by helicopter rotor blade dynamic stall was studied by means of computational fluid dynamics. A discrete vortex method was used for the simulations. The model geometry was a NACA 0012 airfoil oscillating in an α(t) = 15 deg + 10 deg sin(ωt) motion at the reduced frequency of k = 0.173. The freestream flow conditions were of M = 0.117 and Re = 1.463296 x 10 6 . The flap actuation was a brief pulse signal of a sinusoidal shape

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.