Abstract

Sensor-based Human Activity Recognition (HAR) plays an important role in health care. However, great individual differences limit its application scenarios and affect its performance. Although general domain adaptation methods can alleviate individual differences to a certain extent, the performance of these methods is still not satisfactory, since the feature confusion caused by individual differences tends to be underestimated. In this paper, for the first time, we analyze the feature confusion problem in cross-subject HAR and summarize it into two aspects: Confusion at Decision Boundaries (CDB) and Confusion at Overlapping (COL). The CDB represents the misclassification caused by the feature located near the decision boundary, while the COL represents the misclassification caused by the feature aliasing of different classes. In order to alleviate CDB and COL to improve the stability of trained model when processing the data from new subjects, we propose a novel Adversarial Cross-Subject (ACS) method. Specifically, we design a parallel network that can extract features from both image space and time series simultaneously. Then we train two classifiers adversarially, and consider both features and decision boundaries to optimize the distribution to alleviate CDB. In addition, we introduce Minimum Class Confusion loss to reduce the confusion between classes to alleviate COL. The experiment results on USC-HAD dataset show that our method outperforms other generally used cross-subject methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.