Abstract
Simple SummaryExcessive copper in diets is associated with numerous disadvantageous impacts on poultry. The current study evaluated the efficacy of vitamin C and vitamin E in mitigating oxidative stress, hematobiochemical, and histopathological changes in the kidney induced by copper sulfate (CuSO4) toxicity in broiler chickens. The birds were assigned to five experimental groups: 1st group—basal diet with no additives (control group), 2nd group—basal diet complemented with CuSO4 (300 mg/kg diet), 3rd group—basal diet with CuSO4 (300 mg/kg diet) + vitamin C (250 mg/kg diet), 4th group—basal diet with CuSO4 (300 mg/kg diet) + vitamin E (250 mg/kg diet), and 5th group—basal diet with CuSO4 (300 mg/kg diet) + vitamin C (250 mg/kg diet) + vitamin E (250 mg/kg diet). The current study’s findings showed the possible preventive impacts of dietary antioxidants on hematobiochemical alterations, oxidative stress, and kidney damage induced by CuSO4 toxicity.The current investigation evaluated the alleviating effects of vitamin C and vitamin E on oxidative stress, hematobiochemical, and histopathological changes in the kidney induced by copper sulfate (CuSO4) toxicity in chickens. Two hundred and fifty-one-day-old male broiler chicks were randomly allotted into five experimental groups (five replicates/group, ten chicks/replicate): 1st group—basal diet with no additives (control group), 2nd group—basal diet complemented with CuSO4 (300 mg/kg diet), 3rd group—basal diet with CuSO4 (300 mg/kg diet) + vitamin C (250 mg/kg diet), 4th group—basal diet with CuSO4 (300 mg/kg diet) + vitamin E (250 mg/kg diet), and 5th group—basal diet with CuSO4 (300 mg/kg diet) + vitamin C (250 mg/kg diet) + vitamin E (250 mg/kg diet) for a 42 day feeding period. The results showed a significant reduction in red blood cells (RBCs), hemoglobin (Hb) concentration, and hematocrit values as well as total leukocyte counts (WBCs), lymphocyte, heterophil, and monocyte counts in the CuSO4-intoxicated birds (2.42 × 106/µL, 9.54 g/dL, 26.02%, 15.80 × 103/µL, 7.86 × 103/µL, 5.26 × 103/µL, and 1.18 × 103/µL, respectively, at the 6th week) compared to (2.79 × 106/µL, 10.98 g/dL, 28.46%, 21.07 × 103/µL, 10.84 × 103/µL, 7.12 × 103/µL, and 1.60 × 103/µL, respectively) in the control group. Moreover, CuSO4-intoxicated birds showed hypoglycemia with a rise in serum uric acid and creatinine levels (122.68, 5.18, and 0.78 mg/dL at the 6th week) compared to (159.46, 4.41, and 0.61 mg/dL) in the control group. The CuSO4 toxicity in birds induced oxidative stress, indicated by a high serum malondialdehyde level (MDA) and diminished activity of the antioxidant enzymes (glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD)) (2.01 nmol/mL, 37.66 U/mL, and 2.91 U/mL, respectively, at the 6th week) compared to (1.34 nmol/mL, 57.00 U/mL, 4.99 U/mL, respectively) in the control group. High doses of Cu exposure caused severe microscopic alterations in kidney architecture. The addition of vitamins C and E, singularly or in combination, displayed a beneficial effect in alleviating these harmful effects of Cu toxicity. These findings showed the possible mitigating impacts of dietary antioxidants on the hematobiochemical alterations, oxidative stress, and kidney damage induced by CuSO4 toxicity.
Highlights
Copper is a vital micromineral in living animals’ diets
The present study aimed to evaluate the efficacy of single and combined supplementation of vitamin C and vitamin E in mitigating oxidative stress, erythrogram, leukogram changes, and histopathological alterations in the kidney induced by copper sulfate (CuSO4 ) toxicity in broiler chickens
Values displayed a non-significant change at the 3rd week indicating normocytic normochromic anemia, but at the 6th week only mean corpuscular hemoglobin concentration (MCHC) significantly decreased leading to normocytic hypochromic anemia
Summary
Copper is a vital micromineral in living animals’ diets. Cu and cholesterol and decreased Zn levels They reported improved liver Cu concentration and Cu excretion and retention by organic Cu supplementation compared to inorganic form. Copper sulfate is the most common form used as a feed additive in poultry and livestock feed [8]. Supplementation in excess amounts lowers growth, feed intake, and the feed conversion ratio in broiler chickens [9,10]. The addition of 325 ppm copper to poultry diets initiates growth retardation and muscle atrophy [12]. We reported alterations in the liver tissues in Cu-intoxicated chickens represented by hyperplastic and necrotic biliary epithelium with various degenerative and necrotic changes at the third week. Chronic exposure leads to hemolytic anemia and affects the central nervous system [14,16]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.