Abstract
Ethyl 2-methyl acetoacetate (EMA) is a novel allelochemical exhibiting inhibitory effects on the growth of marine unicellular alga Phaeodactylum tricornutum ( P. tricornutum). Oxidative damage and antioxidant responses in P. tricornutum were investigated to elucidate the mechanism involved in EMA inhibition on algal growth. The increase in reactive oxygen species (ROS) levels and malondialdehyde (MDA) contents following exposure to EMA suggested that alga was suffered from oxidative stress and severely damaged. The decrease in cell activity and cellular inclusions suggested that cell growth was greatly inhibited. The activities of the antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxide (GSH-PX) and glutathione S-transferase (GST) increased with the exposure concentration and decreased with the prolongation of exposure time. Cellular ascorbic acid (AsA) and reduced glutathione (GSH) systems were also involved in resisting oxidative stress of EMA by altering the composition of AsA and GSH pools. EMA exposure increased the contents of AsA, GSH, dehydroascorbate (DAsA) and glutathione (GSSG). However, the regeneration rate of AsA/DAsA did not change obviously between treatments and the control, while that of GSH/GSSG decreased significantly under 14 mmol/L EMA exposure on the 3rd day. These results showed that EMA-induced oxidative damage might be responsible for EMA inhibition on P. tricornutum growth and cellular antioxidant enzymes and non-enzymatic antioxidants were improved to counteract the oxidative stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.