Abstract

Most natural algicides including macrophytic allelochemicals are known to selectively inhibit algal growth. The investigations on the modes of action about the species-specific algicides are little. In this study, the effects of allelochemical ethyl 2-methyl acetoacetate (EMA) identified from reed ( Phragmites communis) on the growth, physiological, and biochemical processes of green alga Selenastrum capricornutum were investigated. The results showed that EMA had multiple effects on the growth of S. capricornutum under different initial algal densities (IADs). The algal growth was inhibited by EMA at low IADs, but stimulated at high IADs. Further, the potential modes of action of EMA on S. capricornutum were explored from ultrastructure, metabolic activity, reactive oxygen species level, and lipid peroxidation to trace the microenvironment changes in the algal cells. Damage in cell structure occurred at low IAD, but cells were well developed with increased metabolic activity at high IAD. The reactive oxygen species (ROS) levels were increased under both conditions. The increase of ROS level was acute at low IAD but slow at high IAD. EMA caused significant lipid peroxidation, i.e. oxidative damage on membrane lipids at low IAD but not at high IAD. Based on these results, the initial algal density is considered an important factor to influence algal growth and physiological and biochemical responses to EMA, the effects of EMA on S. capricornutum may be “hormesis-like”, and different ROS increase ratio may be directly related with different responses of S. capricornutum to EMA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.