Abstract

Genetic variation at a linkage disequilibrium block encompassing the cytotoxic T-lymphocyte antigen-4 (CTLA4) gene influences susceptibility to autoimmunity, but identifying the polymorphism(s) responsible for this effect has been challenging. Recently, a single-nucleotide polymorphism (SNP) located 3' to the known polyadenylation site of CTLA4 (+6230G>A) and strongly associated with autoimmune disease was reported to regulate levels of soluble CTLA4 isoform (sCTLA4) but not the full-length isoform. The purpose of the present study is to define the mechanistic effect of the 3'SNP on the isoforms of CTLA4 (alternative splicing vs polyadenylation vs effects on RNA stability). However, using allele-specific single-nucleotide primer extension, we found no difference between mRNA transcripts derived from either +6230G>A allele in 11 heterozygous individuals, in either of the two known CTLA4 isoforms. We also found no effect of this polymorphism on ICOS (inducible costimulator), a putative downstream target. In addition, repeated attempts at 3' RACE (3'rapid amplification of cDNA ends) were unsuccessful in amplifying any contiguous sequence past the known CTLA4 polyadenylation site and no such sequence was found in the EST databases. We conclude that the mechanism of the observed association of the +6230 SNP with autoimmune disease remains to be determined, but does not involve modulation of steady-state mRNA of any known CTLA4 isoform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.