Abstract

The family of carbon allotropes such as carbon nanotubes (CNTs) and graphene, with their rich chemical and physical characteristics, has attracted intense attentions in the field of nanotechnology and enabled a number of disruptive devices and applications in electronics, optoelectronics and energy storage. Just as no individual 2D (two-dimensional) material can meet all technological requirements of various applications, combining carbon materials of different dimensionality into a hybrid form is a promising strategy to optimize properties and to build novel devices operating with new principles. In particular, the direct synthesis of 2D or 3D (three-dimensional) sp$^2$-hybridized all-carbon hybrids based on merging CNTs and graphene affords a great promise for future electronic, optoelectronic and energy storages. Here, we review the progress of all-carbon hybrids-based devices, covering material preparation, fabrication techniques as well as applied devices. Recent progress about large-scale synthesis and assembly techniques is highlighted, and with many intrinsic advantages, the all-carbon strategy opens up a highly promising approach to obtain high-performance integrated circuits. Moreover, this review will discuss the remaining challenges in the field and provide perspectives on future applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call