Abstract

We explicitly construct all stationary, non-static, extremal near horizon geometries in $D$ dimensions that satisfy the vacuum Einstein equations, and that have $D-3$ commuting rotational symmetries. Our work generalizes [arXiv:0806.2051] by Kunduri and Lucietti, where such a classification had been given in $D=4,5$. But our method is different from theirs and relies on a matrix formulation of the Einstein equations. Unlike their method, this matrix formulation works for any dimension. The metrics that we find come in three families, with horizon topology $S^2 \times T^{D-4}$, or $S^3 \times T^{D-5}$, or quotients thereof. Our metrics depend on two discrete parameters specifying the topology type, as well as $(D-2)(D-3)/2$ continuous parameters. Not all of our metrics in $D \ge 6$ seem to arise as the near horizon limits of known black hole solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.