Abstract

Sparse Principal Component Analysis (sPCA) is a popular matrix factorization approach based on Principal Component Analysis (PCA). It combines variance maximization and sparsity with the ultimate goal of improving data interpretation. A main application of sPCA is to handle high-dimensional data, for example biological omics data. In Part I of this series, we illustrated limitations of several state-of-the-art sPCA algorithms when modeling noise-free data, simulated following an exact sPCA model. In this Part II we provide a thorough analysis of the limitations of sPCA methods that use deflation for calculating subsequent, higher order, components. We show, both theoretically and numerically, that deflation can lead to problems in the model interpretation, even for noise free data. In addition, we contribute diagnostics to identify modeling problems in real-data analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.