Abstract

In this paper, all-solution-processed low-voltage organic thin-film transistor inverters on polyethylene naphthalate plastic substrate were achieved in the bottom-gate bottom-contact device configuration. In the devices, 6,13-bis(triisopropylsilylethynyl)-pentacene blended with polystyrene was used as the channel layer, and ultraviolet cross-linked polyvinyl alcohol was used as the gate dielectric layer. With optimized inkjet jetting process parameters and a proper polymer dielectric substrate surface, fine silver electrodes were formed as the source, drain, and gate electrodes. The maximum processing temperature was 150°C. The devices show promising performance with a mobility of 0.8 cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> /(V·s), a subthreshold swing of 100 mV/decade and an ON/OFF ratio of about 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sup> . The fabricated diode-load inverter has a high dc voltage gain up to 67.3 at a supply voltage of 3 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.