Abstract

AbstractSmart windows that incorporate photothermal modulators (PMs) can independently regulate solar transmittance and infrared (IR) emissivity to improve building comfort and reduce energy consumption. Herein, a novel all‐solid‐state variable IR emissivity device (VED) is first designed and fabricated with a high visible irradiation transmittance (T′vis = 0.79) and solar irradiation transmittance (T′sol = 0.75) using an ITO/SiO2/ITO Fabry–Perot cavity structure. The VED exhibits different IR emissivity (ɛ) values at positive (ɛP = 0.80) and negative (ɛN = 0.38) bias, allowing for dynamic regulation of radiation by controlling the electrical conductivity of the indium tin oxide (ITO) layer. Furthermore, an all‐solid‐state PM with a structure of ITO/SiO2/ITO/Glass/ITO/NiO/ZrO2/Li/WO3/ITO, which is capable of independently regulating solar transmittance (ΔT'sol = 0.31) and IR emissivity (Δɛ2.5–25 µm = 0.42), is fabricated. The multi‐mode smart window incorporating PMs can achieve “bright,” “dark,” “warm,” and “cool” modes, making them suitable for deployment in diverse climate zones. The innovative smart window holds a massive potential for use in reducing building energy consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call