Abstract

All‐solid‐state battery (ASSB) technology has emerged as a promising solution for developing safe and high‐energy‐density power sources. However, the pronounced interfacial charge transfer resistance between the electrode and the solid electrolyte continues to be a central obstacle in contemporary ASSBs. This work demonstrates the first approach to printing ASSBs using aerosol jet printing technology. A composite cathode, composed of active materials, binder polymer, and conductive filler, is printed onto the current collector. Subsequently, a solventless superionic conducting solid polymer electrolyte is printed on the cathode to form a seamless interface between the electrode and the electrolyte, resulting in a 3D‐printed all‐solid‐state lithium‐ion battery. The active material in the cathode (lithium iron phosphate, LFP) achieves a loading of ≈10 mg cm−2, while the solid polymer electrolyte layer maintains a thickness of a mere 24 μm. Under ambient conditions (30 °C), the half‐cell ASSB exhibits a specific capacity of over 130 mAh g−1 at 0.05 C. Advanced aerosol printed cells with a porous membrane, which allows the batteries to be safely cycled at higher temperature (60 °C), exhibit fast charging/discharging rates. These batteries are capable of cycling at a 0.3 C rate, delivering a specific capacity surpassing 160 mAh g−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call