Abstract
This paper discusses the operation of a fully integrated solid-state Marx generator circuit, which has been developed for high-frequency (kHz), high-voltage (kV) applications needing rectangular pulses. The conventional Marx generator, used for high-voltage pulsed applications, uses inductors, or resistors, to supply the charging capacitors voltage, which has the disadvantages of size, power loss and frequency limitation. The proposed circuit takes advantage of the intensive use of power semiconductor switches, replacing the passive elements in the conventional circuit, to increase the performance, strongly reducing losses and increasing the pulse repetition frequency. Also, the proposed topology enables the use of typical half-bridge semiconductor structures, while ensuring that the maximum voltage blocked by the semiconductors is the voltage of each capacitor (i.e. the power supply voltage), even with mismatches in the synchronized switching, and with fault conditions. A laboratory prototype with five stages, 5 kW peak power, of this all silicon Marx generator circuit, was constructed using 1200 V IGBTs and diodes, operating with 1000 V d-c input voltage and 10 kHz frequency, giving 5 kV pulses, with 10 mus width and 50 ns rise time
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have