Abstract

A complex coupling matrix has been extensively used in lossy filters and negative group delay devices. For the realization, conventional technique decomposes the complex coupling matrix into lossy resonators and complex inverters. Since the complex inverter does not follow the passivity in some cases, the resultant realization may be globally passive but locally active. This paper proposes a new decomposition technique to ensure the passivity everywhere. It decomposes the complex coupling matrix into a resistive connection matrix and a conventional real coupling matrix, which are both passively realizable. This technique provides a passive realization of the complex coupling matrix. Furthermore, a loss equalization technique is also proposed, to further achieve a uniform quality factor (Q) distribution among all the lossy resonators. Several illustrative examples and an experimental validation are finally provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.