Abstract
To make high mobility oxide thin-film transistors (TFTs) for transparent large displays, the authors fabricated all-oxide TFTs having amorphous mixed-oxide channels of indium oxide (InOx) and zinc oxide (ZnOy). Liquid precursors of 3-(dimethyl amino)propyl-dimethyl indium (C7H18InN) and diethyl zinc [(C2H5)2Zn] and oxygen plasma were used to form mixed-oxide channels by plasma-enhanced atomic layer deposition (ALD). The authors varied the cycle ratio of InOx and ZnOy to deduce the optimal ratio of InOx:ZnOy for high performance TFTs. X-ray photoelectron spectroscopy analyses were performed to reveal the decrease in the oxygen-deficient state as the fraction of InOx increases. At a deposition cycle ratio of InOx:ZnOy = 2:1, the TFT demonstrated the best performance of field effect mobility of 30.3 cm2/V s, subthreshold of 0.14 V/decade, and Ion/Ioff ratio of 3.1 × 109. By adjusting the relative cycles of different oxides in an ALD process, one may obtain the desired mixed-oxide channel TFT properties, which is not readily possible in the sputtering process. By varying the compositions of the oxide channel layer, the latitude of device fabrication could be widening, thereby enabling performance customization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.