Abstract

The Stern-Gerlach experiment, a seminal quantum physics experiment, demonstrated the intriguing phenomenon of particle spin quantization, leading to applications in matter-wave interferometry and weak-value measurements. Over the years, several optical experiments have exhibited similar behavior to the Stern-Gerlach experiment, revealing splitting in both spatial and angular domains. Here we show, theoretically and experimentally, that the Stern-Gerlach effect can be extended into the time and frequency domains. By harnessing Kerr nonlinearity in optical fibers, we couple signal and idler pulses using two pump pulses, resulting in the emergence of two distinct eigenstates whereby the signal and idler are either in phase or out of phase. This nonlinear coupling emulates a synthetic magnetization, and by varying it linearly in time, one eigenstate deflects towards a higher frequency, while the other deflects towards a lower frequency. This effect can be utilized to realize an all-optical, phase-sensitive frequency beam splitter, establishing a new paradigm for classical and quantum data processing of frequency-bin superposition states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.