Abstract

Nonlinear activation functions are crucial for optical neural networks (ONNs) to achieve more various functions. However, the current nonlinear functions suffer from some dilemma, including high power consumption, high loss, and limited bandwidth. Here, we propose and demonstrate an all-optical implementation of a nonlinear activation function based on germanium silicon hybrid integration. The principle lies in the intrinsic absorption and the carrier-induced refractive index change of germanium in C -band. It has a large operating bandwidth and a response frequency of 70 MHz, with a loss of 4.28 dB and a threshold power of 5.1 mW. Adopting it to the MNIST handwriting data set classification, it shows an improvement in accuracy from 91.6% to 96.8%. This proves that our scheme has great potential for advanced ONN applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call