Abstract

New optical fiber based spectroscopic tools open the possibility to develop more robust and efficient characterization experiments. Spectral filtering and light reflection have been used to produce compact and versatile fiber based optical cavities and sensors. Moreover, these technologies would be also suitable to study N-photon correlations, where high collection efficiency and frequency tunability is desirable. We demonstrated single photon emission of a single quantum dot emitting at 1300 nm, using a Fiber Bragg Grating for wavelength filtering and InGaAs Avalanche Photodiodes operated in Geiger mode for single photon detection. As we do not observe any significant fine structure splitting for the neutral exciton transition within our spectral resolution (46 μeV), metamorphic QD single photon emission studied with our all-fiber Hanbury Brown & Twiss interferometer could lead to a more efficient analysis of entangled photon sources at telecom wavelength. This all-optical fiber scheme opens the door to new first and second order interferometers to study photon indistinguishability, entangled photon and photon cross correlation in the more interesting telecom wavelengths.

Highlights

  • New emerging quantum optics technologies are mostly influenced by the possibility to design realistic proposals to implement and control quantum correlations between photons[1]

  • We propose a new all-optical fiber Hanbury Brown & Twiss (HBT) interferometer containing a tunable Fiber Bragg Grating (FBG) optical filtering stage coupled to Geiger mode InGaAs Avalanche Photodiodes (APDs) for single photon detection (Fig. 1)

  • This excitation wavelength is selected in order to significantly reduce the spectral diffusion (SD) effect related to random perturbations of the SAQD by a fluctuating charged environment, so that photogenerated carriers are practically independent of the extrinsic carrier dynamics in the GaAs barriers

Read more

Summary

Introduction

New emerging quantum optics technologies are mostly influenced by the possibility to design realistic proposals to implement and control quantum correlations between photons[1]. In some cases the change in the design of the QD based structure and the growth techniques necessary to achieve such a wavelength tuning can deteriorate the optical quality: reduction of coherence times, increase of the homogeneous linewidth and spectral diffusion effects by the presence of fluctuating charges in the QD surroundings. These factors will invariably induce a reduction of fidelity and photon indistinguishability. Single photon emission at 1300–1500 nm under both pulsed[11] and continuous wave[12,13] excitations, and entangled photon emission at 1300 nm[14], have been demonstrated on SAQDs by using the aforementioned photodetectors and the appropriate experimental set-ups, or by detection strategies based on frequency upconversion[15]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call