Abstract

The π-electrons in benzene, the quintessential aromatic molecule, were previously shown to be distortive, i.e., they prefer localized double bonds alternating with single bonds. It is the σ-electrons that force the double bonds to delocalize, leading to a regular, D(6h) geometry. Herein, we computationally investigate the double-bond localizing or delocalizing propensities of σ- and π-electrons in the archetypal all-metal aromatic cluster Al(4)(2-) and its second- and fourth-period analogs B(4)(2-) and Ga(4)(2-), using Kohn-Sham molecular orbital (MO) theory at BP86/TZ2P in combination with quantitative bond energy decomposition analyses (EDA). We compare the three all-metal aromatic clusters with the structurally related organic species C(4)H(4)(2+), C(4)H(4), and C(4)H(4)(2-). Our analyses reveal that the π-electrons in the group-13 M(4)(2-) molecules have a weak preference for localizing the double bonds. Instead, the σ-electrons enforce the regular D(4h) equilibrium geometry with delocalized double bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.