Abstract

Recently, we presented a molecular orbital (MO) model of aromaticity that explains, in terms of simple orbital-overlap arguments, why benzene (C(6)H(6)) has a regular structure with delocalized double bonds whereas the geometry of 1,3-cyclobutadiene (C(4)H(4)) is distorted with localized double bonds. Here, we show that the same model and the same type of orbital-overlap arguments also account for the irregular and regular structures of 1,3,5,7-cyclooctatetraene (C(8)H(8)) and 1,3,5,7,9-cyclodecapentaene (C(10)H(10)), respectively. Our MO model is based on accurate Kohn-Sham DFT analyses of the bonding in C(4)H(4), C(6)H(6), C(8)H(8), and C(10)H(10) and how the bonding mechanism is affected if these molecules undergo geometrical deformations between regular, delocalized ring structures and distorted ones with localized double bonds. The propensity of the pi electrons is always to localize the double bonds, against the delocalizing force of the sigma electrons. Importantly, we show that the pi electrons nevertheless determine the localization (in C(4)H(4) and C(8)H(8)) or delocalization (in C(6)H(6) and C(10)H(10)) of the double bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.