Abstract
An all-electron scalar relativistic calculation on Cu n H (n = 1–13) clusters has been performed by using density functional theory with the generalized gradient approximation at the PW91 level. Our results reveal that the hydrogen atom prefers to occupy the two fold coordination site for Cu n H (n = 2, 4–6, 8, 10–13) clusters, the single fold coordination site for Cu n H (n = 1, 3, 7) and the three fold coordination site for Cu9H cluster. For all Cu n H clusters, only the Cu11 structure in Cu11H is distorted obviously. After adsorption, the Cu–Cu bond is strengthened and the Cu–H bond of odd-numbered Cu n H clusters is relatively stronger than that of adjacent even-numbered Cu n H clusters. The Cu–Cu bond-length and Cu–H bond-length for all Cu n H clusters of our work are significantly shorter than those of previous work. This discrepancy can be explained in terms of the scalar relativistic effect. The most favorable adsorption between small copper clusters and hydrogen atom takes place in the case that hydrogen atom is adsorbed onto an odd-numbered pure Cu n cluster and becomes Cu n H cluster with even number of valence electrons. The odd–even alteration of magnetic moments is observed in Cu n H clusters and may provide the material with tunable code capacity of “0” and “1” by adsorbing a hydrogen atom onto odd- or even-numbered copper clusters.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have