Abstract

We characterize via small-angle neutron scattering the structural properties of a mixture of all-DNA particles with functionalities 4 (A) and 2 (B) constrained by design to reside close to the percolation threshold. DNA base sequences are selected such that A particles can only bind with B ones and that at the studied temperature (10 °C) all AB bonds are formed and long-lived, originating highly polydisperse persistent equilibrium clusters. The concentration dependence of the scattered intensity and its wavevector dependence is exploited to determine the fractal dimension and the size distribution of the clusters, which are found to be consistent with the critical exponents of the 3-D percolation universality class. The value of DNA nanoparticles as nanometric patchy colloids with well-defined functionality, bonding selectivity, and exquisite control of the interaction strength is demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.