Abstract

Mitra et al. (2019) proposed a new percolation model that includes distortion in the square lattice and concluded that it may belong to the same universality class as the ordinary percolation. But the conclusion is questionable since their results of critical exponents are not consistent. In this paper, we reexamined the new model with high precision in the square, triangular, and honeycomb lattices by using the Newman–Ziff algorithm. Through the finite-size scaling, we obtained the percolation threshold of the infinite-size lattice and critical exponents (ν and β). Our results of the critical exponents are the same as those of the classical percolation within error bars, and the percolation in distorted lattices is confirmed to belong to the universality class of the classical percolation in two dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.