Abstract

Integrated devices that generate multiple optical resonances in the same volume can enhance on-chip nonlinear frequency generation, nonlinear spectroscopy, and quantum sensing. Here, we demonstrate circular Bragg antennas that exhibit multiple spatially overlapping, polarization-selective optical resonances. Using templated atomic layer deposition of TiO2, these devices can be fabricated on arbitrary substrates, making them compatible with a wide range of nonlinear materials and sensing targets, and couple efficiently to underlying films. In this work, we detail the design, simulation, and fabrication of all-dielectric multi-resonant bullseye antennas and characterize their performance using polarized broadband reflection spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.