Abstract

Recent advances in the photonics and optics industries have produced great demand for ever more sophisticated optical devices, such as photonic crystals. However, photonic crystals are notoriously difficult to manufacture. Increasingly, therefore, researchers have turned towards naturally occurring photonic structures for inspiration and a wide variety of elaborate techniques have been attempted to copy and harness biological processes to manufacture artificial photonic structures. Here, we describe a simple, direct process for producing an artificial photonic device by using a naturally occurring structure from the wings of the butterfly Papilio blumei as a template and low-temperature atomic layer deposition of TiO2 to create a faithful cast of the structure. The optical properties of the organic-inorganic diffraction structures produced are assessed by normal-incidence specular reflectance and found to be well described by multilayer computation method using a two-dimensional photonic crystal model. Depending on the structural integrity of the initially sealed scale, it was found possible not only to replicate the outer but also the inner and more complex surfaces of the structure, each resulting in distinct multicolor optical behavior as revealed by experimental and theoretical data. In this paper, we also explore tailoring the process to design composite skeleton architectures with desired optical properties and integrated multifunctional (mechanical, thermal, optical, fluidic) properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.