Abstract

Organic nitrates in the atmosphere are associated with photochemical pollution and are the main components of secondary organic aerosols, which are related to haze. An efficient method for determining organic nitrates in atmospheric fine particles (PM2.5) was established using synthesized standards. Four alkyl (C7-C10) nitrates and three aromatic nitrates (tolyl nitrate, phenethyl nitrate, and p-xylyl nitrate) were synthesized and characterized by 1H and 13C nuclear magnetic resonance spectroscopy. The optimal ions for quantifying and confirming the identities of the analytes were identified by analyzing the standards by gas chromatography tandem mass spectrometry. The tandem mass spectrometer was a triple quadrupole instrument. This method can obtain more accurate information of organic nitrates than on-line methods. Spiked recovery tests were performed using three spike concentrations, and the recoveries were 61.0-111.4 %, and the relative standard deviations were < 8.2% for all of the analytes. Limits of detection and quantification were determined, and the linearity of the method for each analyte was assessed. The applicability of the method was demonstrated by analyzing six PM2.5 samples. Overall, 87% of the analytes were detected in the samples. Phenethyl nitrate, heptyl nitrate, and octyl nitrate were detected in every sample. Phenethyl nitrate was found at a higher mean concentration (3.23 ng/m3) than the other analytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.