Abstract

The utilization of Bacillus sp. for the production of bio-CaCO3 in concrete crack repair and strength enhancement has attracted considerable attention. However, microbial-induced calcium carbonate precipitation (MICP) has yet to be explored as a precedent with activated sludge. Here calcium sourced from concrete slurry waste (CSW) and carbon from sludge microbial β-oxidation under alkaline were used to generate micro/nano CaCO3. The results indicate that the main crystalline form of the generated precipitated particles is calcite, with a particle size ranging from 0.7 to 10 μm. Minimal heavy metals were found in the supernatant following settling. And at the optimum pH of 8.5-9, carbon capture reached 743 mg L-1, and CaCO3 production reached 1,191 mg L-1, and dominant phylum were Proteobacteria and Bacteroidota, with Thauera being a prevalent genus adept in β-oxidation. Mass balance analysis showed that alkali promotes microbial β-oxidation of organisms to produce CO2 and facilitate storage. Thus, the alkaline regulation of metabolism between microbe and CSW provides a novel way of sludge to initiate MICP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.