Abstract

To assess the impact of alkalinity on sulfonation and the enzyme-mediated hydrolysis of softwood cellulose, Lodgepole pine chips were impregnated with 8% sodium sulfite and increasing loadings of sodium carbonate before thermomechanical pulping. It was apparent that alkali addition enhanced lignin sulfonation with an additional 4% loading of sodium carbonate proving optimal. TEM indicated that sulfonation predominantly occurred within the secondary-cell-wall lignin, increasing cellulose accessibility to the cellulase enzymes. Although increasing alkalinity did not significantly enhance lignin sulfonation, likely due to the lower acetyl content of the softwood chips, it increases mannan solubilization. Despite their smaller particle size, softwood pellets were more poorly sulfonated, probably due to their higher lignin content and lower amount of acid groups. This more condensed lignin structure was confirmed by 2D-NMR and GPC analyses which indicated that the EMAL derived from softwood pellets contained less native β-O-4 linkages and had a higher molecular weight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.