Abstract
Cellulose ethers are polymers frequently introduced into mortar formulations. This study allows to assess the potential role of cellulose ethers degradation on the alteration of the cement hydration kinetics. A retardation mechanism based on the calcium binding capacity of chelates is often proposed to describe the effects of some polysaccharides (e.g. sugars) on cement hydration. The alkaline stability of cellulose ethers has been poorly studied and may represent one way to understand the hydration delay induced by such admixtures. Identification and quantification of the hydroxy carboxylic acids generated during alkaline degradation were performed. The results indicate that cellulose ethers are very stable in alkaline media. We also show that the ability of cellulose ethers to complex calcium ions is negligible. Finally, degradation of cellulose ethers and its impact on the cement hydration kinetics does not seem to be significant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.