Abstract

Alkaline peroxide mechanical pulping of paulownia wood harvested from exotic tree plantations in northern Iran was investigated. The fiber length, width, and cell wall thickness of this wood were measured as 0.82 mm, 40.3 μm, and 7.1 μm, respectively. The chemical composition including cellulose, lignin, and extractives soluble in ethanol-acetone, 1% NaOH, hot and cold water was determined as 49.5%, 25%, 12.1%, 26.9%, 11.4%, and 8.1% respectively. The ash content of this wood was 0.45%. Pre-washed chips were chemically treated at 70°C for 120 minutes with different combinations of three dosages (1.5, 3, and 4.5%) of hydrogen peroxide and three dosages (1.5, 3, and 4.5%) of sodium hydroxide prior to defibration. Other chemicals including DTPA, sodium silicate, and MgSO4 were constant at 0.5%, 3%, and 0.5%, respectively. The results showed that using a 1.5% hydrogen peroxide and 4.5% sodium hydroxide charge, the brightness of APMP pulp reached 68.7% ISO and higher chemical dosages did not improve the brightness; however, to produce APMP pulp with higher strength, a sodium hydroxide charge of 4.5% was needed. The tensile strength, tear strength, burst strength indices, and bulk density of the APMP pulp produced from 1.5% hydrogen peroxide and 4.5% sodium hydroxide were measured as 15.5Nm/g, 6.54mN.m2/g, 0.56kPa.m2/g, and 3.47cm3/g, respectively. The resulting pulp was bulky and is suitable for use in the middle layer of boxboard to provide the desired stiffness with a lower basis weight.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call