Abstract

The search for low-cost, high-performance, and robust stability bifunctional electrocatalysts to substitute noble metals-based counterparts for overall water splitting to generate clean and sustainable hydrogen energy is of great significance and challenges. Herein, a high-efficient bi-functional nickel–iron phosphide on NiFe alloy foam (denoted as e-NFP/NFF) with 3D coral-like nanostructure was controllably constructed by means of alkali etching and the introduction of non-metallic atoms P. The unique superhydrophilic coral-like structure can not only effectively facilitate the exposure of catalytic active sites and increase the electroactive surface area, but also accelerate charge transport and bubble release. Furthermore, owing to the synergistic effect between the bicomponent of nickel–iron phosphides as well as the strong electronic interactions of the multiple metal sites, the as-fabricated catalyst behaves with excellent bifunctional performance for the hydrogen evolution reaction (overpotentials of 132 and 286 mV at 10 and 300 mA·cm−2, respectively) and oxygen evolution reaction (overpotentials of 181 and 303 mV at 10 and 300 mA·cm−2, respectively) in alkaline electrolytes. Impressively, cells with integrated e-NFP/NFF electrodes as a cathode and anode require only a low cell voltage (1.58 V) to drive a current density of 10 mA·cm−2 for overall water splitting, along with remarkable stability in long-term electrochemical durability tests. This study provides a tunable synthetic strategy for the development of efficient and durable non-noble metal bifunctional catalysts based on the construction of an elaborate structure framework and rational design of the electronic structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.