Abstract

Electrocatalytic water splitting is considered a promising approach to obtain clean and sustainable hydrogen energy. The integration of optimal nanoarchitecture and multicomponent synergy has been a significant factor for designing a bifunctional electrocatalyst to promote the cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER). In particular, the charge migration, mass transfer, and gas release rate in the catalyzing process are closely correlated with the architecture of the catalyst. Here, ZIF-67-derived N-doped carbon nanofiber-supported (NiCo)S2 nanosheet [(NiCo)S2/NCNF] as a bifunctional electrocatalyst was synthesized using electrospinning, template etching, and subsequent gas sulfidation method. The hierarchical hybrid nanofiber with inner hollow cubes and outer nanosheets provides easy electron penetration, high charge/mass transportation efficiency, and robust structure stability. Furthermore, the MOF-derived carbon-encapsuled bimetal-sulfide and the synergistic effect of double active centers are conducive to an exceptional performance, showing low overpotentials of 177 and 203 mV to drive a current density of 10 mA cm-2 and robust stability for the HER and OER, respectively. Meanwhile, the (NiCo)S2/NCNF electrodes exhibit a small voltage of 1.61 V for overall water splitting activity with an electrolyzer cell at current densities of 10 mA cm-2 over 12 h. This work presents novel insights into the bifunctional catalyst for promoting the overall water splitting via a MOF-derived nanoarchitecture and multicomponent synergy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.