Abstract

Graphene is a promising electrode material for energy storage applications. The most successful method for preparing graphene from graphite involves the oxidation of graphite to graphene oxide (GO) and reduction back to graphene. Even though different chemical and thermal methods have been developed to reduce GO to graphene, the use of less toxic materials to generate graphene still remains a challenge. In this study we developed a facile one-pot synthesis of deoxygenated graphene (hGO) via alkaline hydrothermal process, which exhibits similar properties to the graphene obtained via hydrazine reduction (i.e. the same degree of deoxygenation found in hydrazine reduced GO). Moreover, the hGO formed freestanding, binder-free paper electrodes for supercapacitors. Coin cell type (CR2032) symmetric supercapacitors were assembled using the hGO electrodes. Electrochemical characterization of hGO was carried out using lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and ethylmethylimidazolium bis-(trifluoromethanesulfonyl)imide (EMITFSI) electrolytes. The results for the hGO electrodes were compared with the hydrazine reduced GO (rGO) electrode. The hGO electrode exhibits a energy density of 20 W h kg−1 and 50 W h kg−1 in LiTFSI and EMITFSI respectively, while delivering a maximum power density of 11 kW kg−1 and 14.7 kW kg−1 in LiTFSI and EMITFSI, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.