Abstract

We present a detailed experimental analysis of Rb-polarization imaging in high-pressure gas cells. The Rb vapor in these cells is optically pumped by high-power diode-laser arrays. We present images for high (35 G) and low (4 G) magnetic fields and for different He and Xe buffer-gas mixtures. We demonstrate that high-field imaging provides an absolute measurement of the Rb-polarization distribution in the cell, based on the fact that a spin-temperature distribution of the hyperfine magnetic sublevels is established in high-pressure buffer gases. A survey of various mechanisms that broaden the Rb magnetic-resonance lines is presented. These broadening mechanisms determine the limits of the spatial resolution achievable for images of the Rb-polarization distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.