Abstract

The formation and repair of alkali-labile sites in the DNA of human cells treated with 254 nm u.v. light, 1'-acetoxyestragole (1'-AcO-E) or 1'-acetoxysafrole (1'-AcO-S) have been studied. DNA was analysed by sedimentation in alkaline sucrose gradients after the cells had been layered on the gradients in lysis solution for 15 h (long lysis) or for only 0.75 h (short lysis). With the long lysis technique, a dose of 20 J/m2 resulted in 0.2-0.4 strand breaks/10(8) daltons while treatment of cells with 0.5 mM 1'-AcO-E or 1'-AcO-S caused 0.1-0.3 strand breaks/10(8) daltons. In excision repair proficient T98G cells, one third to two thirds of these strand breaks disappeared upon 4 h incubation after exposure to each of the three agents. In excision repair deficient xeroderma pigmentosum fibroblasts (XPA), the alkali-labile sites produced by 1'-AcO-E or 1'-AcO-S were still repaired, although those resulting from u.v.-irradiation were not. Similar characteristics were observed after the short lysis period. The sedimentation velocities of nucleoids, prepared from treated XPA cells, in neutral sucrose gradients containing ethidium bromide, did not reveal the presence of overt strand breaks in the DNA, suggesting that the lesions were of a type in which the sugar-phosphate backbone was intact but sensitive to hydrolysis by alkali. The contribution of this type of damage to the total DNA damage produced by the agents was estimated to be less than 1% for u.v., and less than 2.5% for 1'-AcO-E and 1'-AcO-S.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.