Abstract
Photocatalytic hydrogen peroxide (H2O2) generation on the catalyst surface from oxygen is an electron-demanding process, making the construction of an electron-rich surface highly advantageous. In this study, a localized electric field was observed on the surface of polymeric carbon nitride (g-C3N4) when alkali metal cations were adsorbed onto it. These fields effectively inhibited surface carrier recombination and extended their lifespan, thereby enhancing H2O2 production. As a result, g-C3N4 achieved a superior H2O2 yield of 2.25 mM after 1 h in a 0.25 M K+ solution, which was 2.06 times greater than that (1.09 mM) achieved in a pure solvent. Notably, the increase in photocatalytic efficiency showed a remarkable dependence on ion species. At low concentrations, H2O2 generation efficiency was in the order of Li+ < Na+ < K+ < Rb+ < Cs+. However, after optimizing the ion concentration, the highest H2O2 production was achieved in a solution containing K+ instead of Cs+. Molecular dynamics simulations and temperature-dependent photocatalysis experiments revealed that the synergistic interaction between adsorption energy and adsorption distance was crucial in governing the extent to which alkali metal cation adsorption enhanced g-C3N4 photocatalytic H2O2 production. This study provides theoretical insights for the design of materials for electron-demanding photocatalysis and aids in understanding variations in photocatalytic behavior in natural waters.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have