Abstract

Atomically dispersed supported catalysts hold considerable promise as catalytic materials. The ability to employ and stabilize them against aggregation in complex process environments remains a key challenge to the elusive goal of 100% atom utilization in catalysis. Herein, using a Gd-doped ceria support for atomically dispersed surface Pt atoms, we establish how the combined effects of aliovalent doping and oxygen vacancy generation provide dynamic mechanisms that serve to enhance the stability of supported single-atom configurations. Using correlated, in situ X-ray absorption, photoelectron, and vibrational spectroscopy methods for the analysis of samples on the two types of support (with and without Gd doping), we establish that the Pt atoms are located proximal to Gd dopants, forming a speciation that serves to enhance the thermal stability of Pt atoms against aggregation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call