Abstract

We study the orientation statistics of spheroidal, axisymmetric microswimmers, with shapes ranging from disks to rods, swimming in chaotic, moderately turbulent flows. Numerical simulations show that rodlike active particles preferentially align with the flow velocity. To explain the underlying mechanism, we solve a statistical model via the perturbation theory. We show that such an alignment is caused by correlations of fluid velocity and its gradients along particle paths combined with fore-aft symmetry breaking due to both swimming and particle nonsphericity. Remarkably, the discovered alignment is found to be a robust kinematical effect, independent of the underlying flow evolution. We discuss its possible relevance for aquatic ecology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.