Abstract

Helicases function in most biological processes that utilize RNA or DNA nucleic acids including replication, recombination, repair, transcription, splicing, and translation. They are motor proteins that bind ATP and then catalyze hydrolysis to release energy which is transduced for conformational changes. Different conformations correspond to different steps in a process that results in movement of the enzyme along the nucleic acid track in a unidirectional manner. Some helicases such as DEAD-box helicases do not translocate, but these enzymes transduce chemical energy from ATP hydrolysis to unwind secondary structure in DNA or RNA. Some helicases function as monomers while others assemble into defined structures, either dimers or higher order oligomers. Dda helicase from bacteriophage T4 and NS3 helicase domain from the hepatitis C virus are examples of monomeric helicases. These helicases can bind to single-stranded DNA in a manner that appears like train engines on a track. When monomeric helicases align on DNA, the activity of the enzymes increases. Helicase activity can include the rate of duplex unwinding and the total number of base pairs melted during a single binding event or processivity. Dda and NS3h are considered as having low processivity, unwinding fewer than 50 base pairs per binding event. Here, we report fusing two molecules of NS3h molecules together through genetically linking the C-terminus of one molecule to the N-terminus of a second NS3h molecule. We observed increased processivity relative to NS3h possibly arising from the increased probability that at least one of the helicases will completely unwind the DNA prior to dissociation. The dimeric enzyme also binds DNA more like the full-length NS3 helicase. Finally, the dimer can displace streptavidin from biotin-labeled oligonucleotide, whereas monomeric NS3h cannot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call