Abstract
We propose a design for an efficient spin-photon interface to a color center in a diamond microdisk. The design consists of a silicon oxynitride triangular lattice overlaid on a diamond microdisk without any aligmnent between the layers. This enables vertical emission from the microdisk into low-numerical aperture modes, with quantum efficiencies as high as 46% for a tin vacancy (SnV) center. Our design is robust to manufacturing errors, potentially enabling large scale fabrication of quantum emitters coupled to optical collection modes. We also introduce a novel approach for optimizing the free space performance of our device using a dipole model, achieving comparable results to full-wave finite difference time domain simulations with 7 · 106 reduction in computational time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.