Abstract

A processable approach to fabricate suspended and aligned single-walled carbon nanotube (SWNT) beams and cantilevers is presented in this article. Suspended dense SWNT membranes were aligned and deposited by a controlled dielectrophoresis process. A gallium focused ion beam at 30 keV and 50 pA with an optimized dose bombarded the SWNT membranes to prepare them for suspended nanoscale beams and cantilevers. To demonstrate the application of this process to nanoelectromechanical systems (NEMS), an SWNT switch was realized with a pull-in voltage of ∼7.8 V. Accordingly, the fabrication process of SWNT beams and cantilevers is believed to be very promising for prototyping of many NEMS devices such as switches, resonators, and biosensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.