Abstract

Priority-based logistics and the polarization of drones in civil aviation will cause an extraordinary disturbance in the ecosystem of future airborne intelligent transportation networks. A dynamic invention needs dynamic sophistication for sustainability and security to prevent abusive use. Trustworthy and dependable designs can provide accurate risk assessment of autonomous aerial vehicles. Using deep neural networks and related technologies, this study proposes an artificial intelligence (AI) collaborative surveillance strategy for identifying, verifying, validating, and responding to malicious use of drones in a drone transportation network. The dataset for simulation consists of 3600 samples of 9 distinct conveyed objects and 7200 samples of the visioDECT dataset obtained from 6 different drone types flown under 3 different climatic circumstances (evening, cloudy, and sunny) at different locations, altitudes, and distance. The ALIEN model clearly demonstrates high rationality across all metrics, with an F1-score of 99.8%, efficiency with the lowest noise/error value of 0.037, throughput of 16.4 Gbps, latency of 0.021, and reliability of 99.9% better than other SOTA models, making it a suitable, proactive, and real-time avionic vehicular technology enabler for sustainable and secured DTS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.