Abstract

The deployment and scheduling of tasks and messages in distributed real-time systems are NP-hard problems, so there are no optimal methods to solve them in polynomial time. Consequently, these problems are suitable to be approached with generic search and optimisation algorithms. In this paper we propose a multi-objective genetic algorithm based on a permutational solution encoding for the deployment and scheduling of distributed real-time systems. Besides deploying and scheduling tasks and messages, the algorithm can minimize the number of the used computers, the utilization of computing and networking resources and the average worst-case response times of the applications. The experiments show that this genetic algorithm can successfully synthesize complex distributed real-time systems in reasonable times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.