Abstract

The Bayesian persuasion paradigm of strategic communication models interaction between a privately informed sender and an ignorant but rational receiver. The goal is typically to design a (near-)optimal communication (or signaling) scheme for the sender. It enables the sender to disclose information to the receiver in a way as to incentivize her to take an action that is preferred by the sender. Finding the optimal signaling scheme is known to be computationally difficult in general. This hardness is further exacerbated when the message space is constrained, leading to NP-hardness of approximating the optimal sender utility within any constant factor. In this paper, we show that in several natural and prominent cases the optimization problem is tractable even when the message space is limited. In particular, we study signaling under a symmetry or an independence assumption on the distribution of utility values for the actions. For symmetric distributions, we provide a novel characterization of the optimal signaling scheme. It results in a polynomial-time algorithm to compute an optimal scheme for many compactly represented symmetric distributions. In the independent case, we design a constant-factor approximation algorithm, which stands in marked contrast to the hardness of approximation in the general case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.